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ABSTRACT

Fuzzy control is a methodology that translates natural-language rules, formulated by expert

controllers, into the actual control strategy that can be implemented in an automated

controller. In many cases, in addition to the experts' rules, we have additional statistical

information about the system. In the present paper, we explain how to use this additional

information in fuzzy control methodology.

INTRODUCTION

There are two main methodologies that lead to automated control. If we have a mathematical description of

the system that we are going to control (either in deterministic, or in statistical terms), then we can apply

methodology of traditional control theory. If we do not have such a description, but we have experts who

are good in controlling this kind of objects, then we can ask the experts to formulate the rules that they use

in whatever fuzzy, natural-language terms they can, and then apply fuzzy control methodology (see, e.g., [1,

2, 4]) to translate these rules into the actual control strategy.

Both methodologies work fine. If we have enough rules, then we can apply fuzzy control. If we have a
,-_sufficient amount of statistics, we can build a mathematical model of the controlled object, and then apply
o,
m. traditional control methodology.
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Usually, when we start controlling some complicated object, we first do not have a mathematical model, so

the only information we have is the experience of the expert controllers. Then, gradually, we get more and

more statistical information about this object, and eventually, we become able to apply traditional control

methods. During this transition period, we do not yet have a precise mathematical model, but we already

have some statistical information about the object. While controlling the system, in course of time we get

some experience, and we can extract some statistical information from our experience. Since we now know

more about the controlled system, we would like to use this additional statistical knowledge to improve the

control strategy. How to do it?

At present there are no known ways to do it, and the only suggestion is to wait until we have enough

information for applying traditional control theory, and then find an optimal control and switch to this
control.

So, we need a method to "translate" probabilistic knowledge into fuzzy terms. In the present report, we

propose and justify such a method.

FORMULATION OF A PROBLEM: A REALISTIC EXAMPLE

To give the reader a better understanding of what we are talking about, let us give a simple example of this

kind of a situation. Let us consider a control system whose purpose is to stabilize the value of some parameter

z at some desired value z0, and this parameter is difficult to measure directly (e.g., the temperature inside

the nuclear or chemical reactor). We will consider the simplest situation, when it is possible to apply the

direct control u that changes the value of z in the desired direction: dz/dt = u. For such systems, the

optimal control can be described as a function u(Az), where _z = z - z0. When _z = 0, we do not need
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any'controlat all,so u(0) - 0. For Az closeto 0 (i.e.,forthe situationsinthe vicinityof equilibrium),

we can neglectquadraticand higherterms in the Taylorexpansionofu(Az), and thus approximatethis

functionu(Ax) by a linearexpressionu - -kAz.

Since we assumed that the parameter z is di_cult to measure directly, we can have two kinds of information

about its value: first, we can apply indirect (and therefore, not very precise) measurements. Second, we can

rely on the ability of the experts to control such systems and thus to estimate As. Suppose that for some

situation (some combination of observable parameters), an indirect measurement resulted in an approximate
value _ _ z, and that the standard deviation of this estimate (i.e., the mean square value of the difference

z - _) equals tr (e.g., _ = 1.0, and a = 0.5). We can assume that the probabilities of different errors are
normally distributed (this is more or less standard assumption in measurement theory). Suppose that for
this same situation, an expert uses his experience to estimate the actual value of z as "approximately X,

with precision _ e" for some values X and e (e.g., "approximately 1.5, with precision ._0.5"). Using known
methods of fuzzy theory, we can describe this statement by a membership function #(z) whose maximum

corresponds to x - X (e.g., a triangular membership function).

If we use only the statistical information (i.e., the result of the measurements), then it is reasonable to apply

the value of the control u that corresponds to the most probable value of z, i.e., u - -k_. If we use only
the expert's estimate, then it is reasonable (according to well known defuzzification techniques) to apply a
control that corresponds to the most possible values of z, i.e., in this case, a control u - -kX.

Both estimates of z are not very precise: expert's estimates are practically never precise, and about the
result of the measurement, we specifically assumed that it is not precise. Therefore, both control values -k_
and -kX are far from being ideal. So, it is desirable to combine these two types of knowledge and design a

better control strategy.

But how to do it? If we use statistical methods, then we do not know how to use fuzzy estimates. Besides,

even if we invent some methods to translate fuzzy estimates into probabilities, these fuzzy estimates will still

remain subjective expert's estimates. Calling them probabilities will be misleading: if this "probability" of
an error is 0.5, it does not mean (as for usual probabilities) that this kind of an error occurs in half of the
cases. So, statistical methods are out of question. Hence, we must somehow use fuzzy methods to handle
both fuzzy estimates and probabilities. But how?

So, what we need is a method to translate probabilities into fuzzy terms.

BASIC IDEA OF TRANSLATING PROBABILITIES INTO FUZZY TERMS

Fuzzy estimates of degree of belief:where do they come from? In fuzzycontrol,we startwiththe

unce" xintyvaluesthatcharacterizeour degreeofbeliefthat,say,0.3issmall,orthatI0isbig.Where do we

getthesedegreesofbelieffrom? One ofthestandardways todo so istoaskan experttoquantifyhisdegree

ofbelief,say,on a scalefrom 0 to 10,and then,ifhe choosessome valueD, toestimatehisdegreeofbelief

as D/IO (e.g.,ifhe choosesD --6,then hisdegreeof beliefis60%). The readerswho everanswered any

pollsor sociologicaltestswilleasilyrecognizethe standardway to quantifysuch vague notionsas "degree
ofsatisfactionwith the service",etc.

In applyingthismethodology,one has to be veryaccurateinchoosinga scale(I0? 5? I00?).On one hand,

the biggerthe scale,the betterestimateswe get.On the otherhand, an expertcannot distinguishbetween

too many possibledegreesofcertainty,so thereisno senseinusingextremelylongscales.

Optimal decisions are based on probabilistic estimates. In decision making, it is well known since [3]
that if decisions of a decision-maker are consistent (in some reasonable sense), then they have to be based
on some probabilistic estimates.

Itsounds reasonableto assume thatexperts(whose decisionswe are analyzing)are consistentdecision-

makers (elsethey would not have been successfulin control,and would not have been experts).So, itis

reasonabletoassume thatthe decision-makingprocessthatisgoingon insidetheirbrainsisbased on some

probabilities, i.e., is based on some statistical estimates.
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Let us apply optimal decision theory to experts estimating their degree of belief.How does an

expertget theseprobabilities?Suppose,forexample, thatsomeone asksan expertto estimatehisdegree

ofbeliefin some statementA (e.g.,that 0.3isnegligible).To givesuch an estimate,an expertrecollects

(consciouslyor subconsciously)allthe casesin which 0.3 (ora valuethatiscloseto 0.3)was tested,and

figuresout when 0.3provedtobe reallynegligible,and when the differenceof0.3causedimportantchanges.

Suppose thattotally,he recallsn cases,and inm ofthem 0.3was negligible.Then a reasonableestimatefor

the probabilityp(A) (i.e.,the probabilitythat0.3isnegligible)isf = m/n.

The actual probability p can be different from f and, therefore, different values of m/n can correspond to

one and the same probability. Indeed, if we have a sequence of n independent events with probability p,
then the mathematical expectation of m/n is p, and the standard deviation a of m/n is x/p(1 - p)/n. We
can now apply a "3a- rule" from mathematical statistics, and conclude that for a given f, all the values

p such that If - Pl < 3x/p(1 - p)/n are possible. Therefore, the estimates m/n and m'/n can correspond

to one and the same probability p if there exists a probability p such that ]m/n - p[ < 3v/p(1 - p)/n and

Irn/n - p[ < 3v/p(1 - p)/n. We say that the estimates are diHerent if there is no such p. Now, we are ready
to form a scale: we take 0 as the first element .f0 of this scale; for the second element fl, we take the smallest
estimate that is different from 0; for f_, we take the smallest estimate that is different from both 0 and fl,

etc. Suppose that there are totally k elements on this scale. Then, when we must estimate our degree of

belief on a scale from 0 to k, we recall n cases, estimate f = m/n, and produce k for which fk _<m/n < f_+l.

Let us denote by f(p) the value of this scale that corresponds to a probability p. This is not a uniform
scale, because the distance between two consequent elements p and p + Ap on this scale is proportional to

V_ - P)" In other words, Ap ,,. V/_ -- p) leads to Af(p) - consL For small Ap, we get Af(p) ._ f'(p)Ap.

Therefore,from Af(p) - const and Ap ,,-v_l- p),we concludethatthe unknown functionf(p) must

satisfy the differential equation f'(p)v/_l - p) - consL

From the definition of f(p), we can easily conclude that f(0) = 0 and f(1) = 1. The solution of the above-
given differential equation with these boundary conditions is f(p) = 1/2 + 1/r arcsin(2p - 1). So, we arrive

at the following conclusion:

RECOMMENDATIONS

Ifwe know theprobabilityp(A) ofsome eventA, and we want touse thisinformationinthefuzzyknowledge

base,then we must to thisknowledge base that we know A with degreeof belieff(p(A)),where f(p) -

I/2 + I/Traresin(2p- 1).

APPLYING THESE RECOMMENDATIONS TO THE ABOVE EXAMPLE

Let us followtheserecommendations on the above realisticexample. In thatexample,itwas necessaryto

translatethefollowingstatisticalinformationintothe fuzzylanguage:thatz isdistributedaccordingto the

Gaussian law,with the averagevalue_, and the standarddeviationa.

For this information, the most probable value of z is $, and the bigger the difference between z and _, the
less probable this value z. Hence, it is reasonable to translate this information into a membership function
p(z) that would attain its maximal value for z - 5, and would monotonically decrease to 0 as z starts

decreasing or increasing. So, we are looking for a membership function of the type g(z) = g(Iz - _l/a),

where g(z) is a decreasing function from (0, co) to [0, 1].

A reasonable interpretation of a membership function p(z) is as follows: for every value v from 0 to 1, our
degree of belief that it is possible for x to belong to the set {a; : _(z) >_ v}, is equal to v. This means that

our degree of belief that it is impossible for z to belong to that set is equal to 1 - v. But the fact that it

is impossible for z to belong to this set means that z necessarily belongs to its complement {z : p(z) < v}.

According to our expression of p in terms of g, the inequality/J(x) < v is equivalent to Iz I > g-z(v), where
9 -z means an inverse function, and z = (z - _)/er. So, our degree of belief that ]z I > y-z(v ) is equal to

1 - v. If we denote w = g-l(v), we conclude that v = g(w), and so our degree of belief that Iz[ > w is equal
to 1 - g(w). _.
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Now, z has a standard normal distribution, and hence, the probability that Izl > w, is equal to 2F(-w),
wheye by F(z) we denoted a (cumulative) distribution function of a standard normal distribution. According
to our recommendations, this means that our degree of belief that ]z I > w, is equal to f(2F(-w)), where

f(p) is the above-described function. So, 1- 9(to) = f(2F(-w)), hence g(w) - 1- f(2F(-w)), and
= g(l -

So,we have translatedthe statisticalinformationintoa membership function.Now, both partsof our

knowledgeareexpressedinfuzzyterms:statisticalone on termsofthisfunctionp(z),and the originalfuzzy

one in termsofsome otherfuzzyfunction/_0(z).

Now, we can apply an &-operation to combine thesetwo piecesof knowledge intoa combined mem-

bershipfunction#c(z) that expressesboth partsof thisknowledge. E.g.,ifwe use rainas &, then

#c(z) "- min(#(z),/_0(z)).Ifwe use product as &, then #c(z) = #(Z)#o(Z). To thisresultingfunction

#c(z),we can apply a defuzzificationprocedureand determinethe appropriatevalueof zc (e.g.,the value

forwhich #e(z) attainsitsmaximum), and then applythe controlu = -kzc.
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